Regina GPS Validation Network

February 1997

Saskatchewan Property Management Corporation

*

Natural Resources Canada

Geodetic Survey Division

SaskGeomatics Division

Regina GPS Validation Network

Prepared by

Geodetic Survey Division Natural Resources Canada

in cooperation with

SaskGeomatics Division Saskatchewan Property Management Corporation

Additional copies of this document are available from:

Map and Photo Distribution Centre Main Floor 2151 Scarth Street Regina, Saskatchewan S4P 3V7

Tel: (306) 787-2799 *Fax:* (306) 787-3335

Foreword

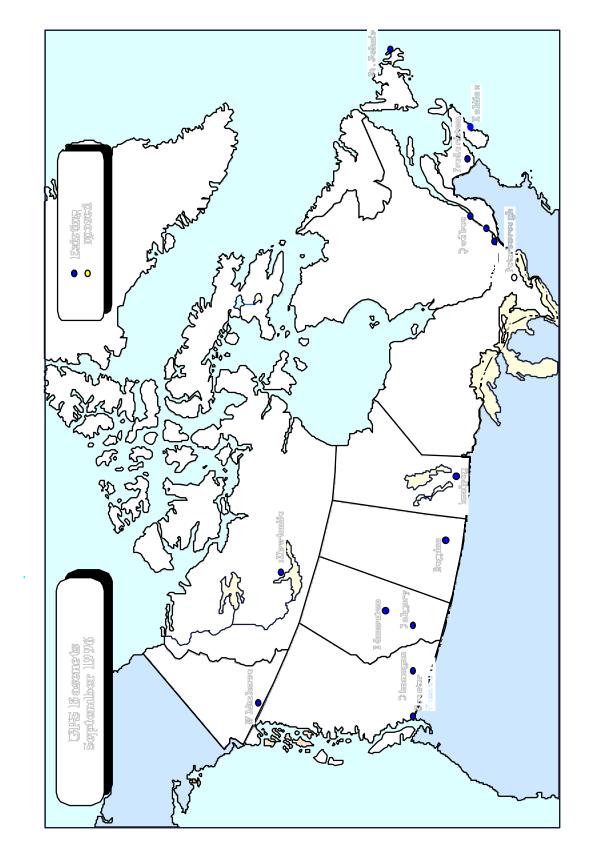
The purpose of this booklet is to provide the basic information required for users to test their GPS equipment and positioning methodology on the Regina GPS Validation Network. Please contact the Map and Photo Distribution Centre, SaskGeomatics Division, for information related to this network that is not included in this document.

Table of Contents

	J	Page
1.	Introduction to GPS Validation Networks	1
	Background	1
	Applications	
	Characteristics	3
2.	The Regina GPS Validation Network	4
	Description	4
	Determination of Network Validation Values	4
Aj	opendices	
A.	Station Descriptions and Site Sketches	7
	Notice to Users	7
	Station 90V100 Pier 1	8
	Station 90V101 Pier 2	
	Station 90V103 Pier 4	
	Station 90V106 Pier 7	.11
	Station 90V107 Pier 8	
	Station 90V108 Pier 9	.13
	Station 90V109 Pier 10	.14
	Station 90V110 Pier 11	
	Station 90V111 Pier 12	
	Station 90V112 Pier 13	
	Station 90V113 Pier 14	.18
B.	Tables of Values	.19
	1. Ellipsoidal Coordinates	.19
	2. Geocentric Cartesian Coordinates	
	3. UTM Mapping Plane Coordinates	
	4. Interstation Cartesian Coordinate Differences	
	5. Absolute 95% 3-D Confidence Ellipsoids	.23
	6. Absolute 95% Horizontal Confidence Ellipses	.23
	7. Absolute 95% Vertical Confidence Intervals	
	8. Relative 95% 3-D Confidence Ellipsoids	.24
	9. Relative 95% Horizontal Confidence Ellipses	.26
	10. Relative 95% Vertical Confidence Intervals	.26
C.	Contacts for Additional Information	.28
D.	Pier Design - Regina GPS Validation Network Forced	
	Centering Pillars	.29
	1. Cross Section	
	2. Pier Construction	
	3. Forced Centering Plate	.31

1. Introduction to GPS Validation Networks

Background


The Global Positioning System (GPS) has dramatically reshaped surveying and navigation in many parts of the world. The use of GPS positioning has become increasingly widespread. The need for a "truth" against which to test GPS positioning accuracy and precision has led to the establishment of GPS validation networks across Canada, also known as basenets, to serve as a physical standard for evaluating GPS equipment, software and positioning methodologies.

The first GPS validation network was established in the Ottawa region in 1988. Since that time other such networks have been established across the country, in collaboration with the provincial agencies responsible for geodetic surveying within their jurisdictions. The map that follows shows the locations of other GPS validation networks in Canada. Geodetic Survey Division (GSD), Natural Resources Canada (NRCan) maintains sole responsibility of the Ottawa network, including site maintenance and dissemination of basenet-related information such as data. For other GPS validation networks, including the Regina basenet, this responsibility is shared with the provincial survey agencies.

GSD, NRCan is responsible for establishing the validation coordinates for the network through precise GPS measurements. Each GPS validation network is initially established using at least two separate measurement campaigns in different years. Subsequent measurements may be performed periodically to check on pier movement.

Applications

GPS validation networks are mainly used to evaluate results obtained using a specific combination of GPS equipment, software, and observation procedures. The full range of GPS equipment, from hand-held C/A code receivers to geodetic quality dual frequency receivers, may be checked. Similarly, the accuracies obtainable from different observation procedures such as single point positioning, differential code, kinematic or static positioning techniques may be assessed.

손각무 \\ \ \ 시 전화 (하고 1) 사는 (ㅠ~~ 고) < ~ \\ 1) 사가 안

The validation networks may also be used to evaluate proposals from GPS survey contractors. A "validation survey" on a GPS basenet may be required to assess the proposed GPS positioning system, and determine with confidence whether it can meet contract accuracy requirements. A positioning system in this context includes the equipment and procedures used for data collection as well as the software and procedures used for the data processing and adjustment.

Characteristics

A GPS validation network is typically comprised of between 5 and 10 forced centering pillars or piers. Usually two of these pillars are also part of an Electronic Distance Measurement (EDM) calibration baseline and form the core of the network. The network design provides GPS baselines of varying lengths, usually ranging between 1 and 100 kilometres, and the design and location of pillars is such that:

- forced centering is used to eliminate centering error ;
- sites are easily accessible;
- sites are generally clear of obstructions above 10 degrees from the horizon; and
- for stability and longevity, pillar monumentation is carried out using the same specifications as for EDM calibration baseline pillars. (See Appendix D.)

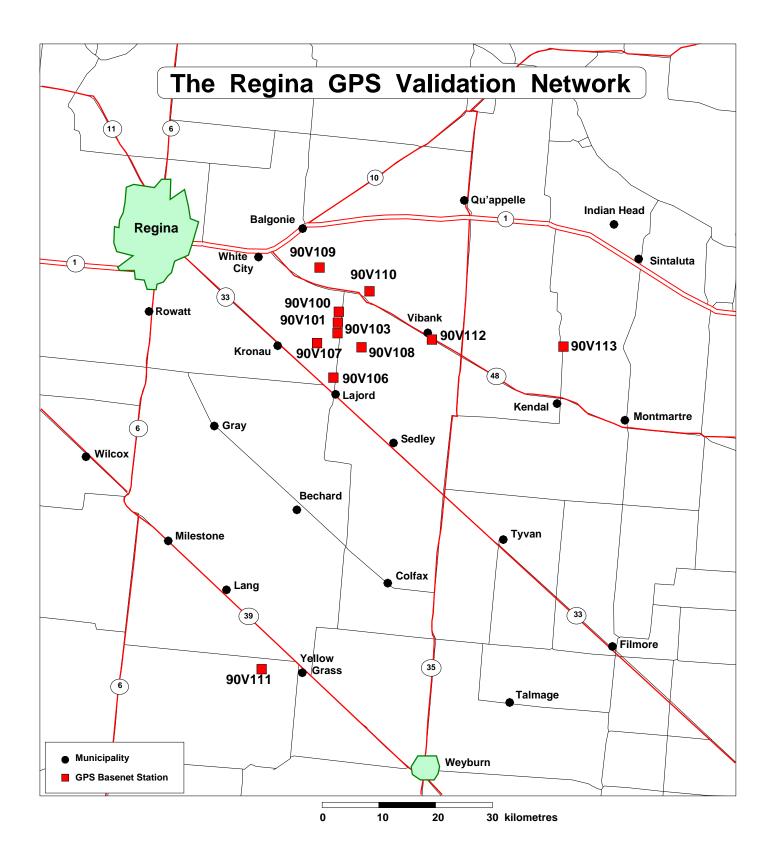
The following section contains a description and map of the Regina GPS validation network, and a brief explanation of the determination of coordinates listed in this document.

2. The Regina GPS Validation Network

Description

The Regina GPS validation network was constructed in 1990 by the SaskGeomatics Division, Saskatchewan Property Management Corporation, and is comprised of eleven forced centering pillars. Three of these pillars, 90V100, 90V101 and 90V103, are also coincident with the Regina-Davin baseline which is used for EDM calibration. One of the pillars in the network, station 90V107, is also a Canadian Base Network (CBN) station.

Most of the piers are located within a 10 kilometre radius of Davin, Saskatchewan, about 36 kilometres southeast of Regina. One pier is located 60 kilometres south of Davin, and 2 piers are located 20 kilometres and 40 kilometres, respectively, east of the main cluster. The basic configuration of the network, as shown on the following map, provides baseline lengths ranging from 1 to 76 kilometres.


The Regina basenet was first observed with GPS in 1991 by GSD, NRCan, with a second series of measurements carried out in 1992. Ashtech M-XII dual frequency GPS receivers were used to collect the observations.

In addition to the three-dimensional positions established with GPS, all the pillars in the network have orthometric heights established through first order levelling. Descriptions and site sketches for each of the pillars, as well as a notice to users of this validation network, are provided in Appendix A.

Determination of Network Validation Values

Coordinate values for the Regina GPS validation network were determined using data from two complete sets of observations carried out in 1991 and 1992, as shown in the following table. For each epoch, or year, the GPS data was processed in session mode using the Bernese GPS processing software.

The network validation coordinates appearing in this document were produced by combining the sessions from the two measurement epochs together in a minimally constrained three-dimensional least squares adjustment. Station 90V107 was constrained (using the CBN covariance matrix as weights) to its NAD83 Canadian Spatial Reference System (CSRS) coordinates. In tests carried out, to check for pier movement and statistical compatibility between the epochs, there was no indication of significant pier movement or distortion.

Year	Receiver Type	Number of Receivers	Session Length (hours)	Number of Sessions	GPS Processing Software
1991	Ashtech M-XII	6	4.5	8	Bernese v3.3
1992	Ashtech M-XII	5	5	5	Bernese v3.3

Measurement History - Regina GPS Validation Network

All coordinate values and error estimates can be found in Appendix B. The ellipsoidal, geocentric Cartesian, and mapping plane coordinates for network piers are given in Tables 1, 2 and 3, respectively. The Cartesian coordinate differences between each of the pillars can be found in Table 4. Absolute 95% confidence regions are provided in Tables 5, 6, and 7, while relative 95% confidence regions are provided in Tables 8, 9, and 10. Note that corresponding covariance data is available, as described in Appendix C.

Separate confidence regions are given for the three-dimensional (3-D), horizontal (2-D) and vertical (1-D) coordinates. This is necessary because the expansion factors used to compute the 95% confidence regions are different for each case. The 3-D confidence ellipsoids should be used when validating 3-D results. Similarly, the horizontal confidence ellipses should be used when validating only horizontal results. The vertical confidence intervals should be used when validating only vertical results. Separate horizontal and vertical validation tests must not be used together as a validation of 3-D results.

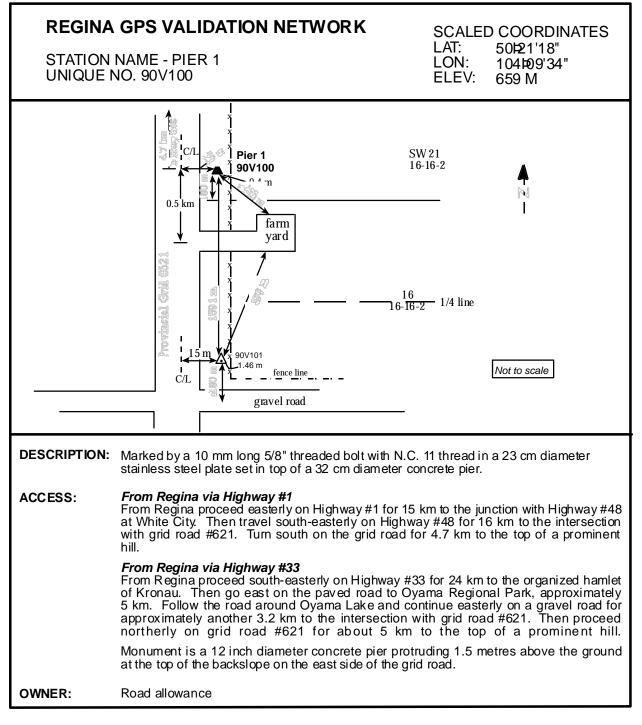
The coordinates given in this document are to be used **for validation purposes only.** If needed, adopted NAD83 survey control values are available from the Map and Photo Distribution Centre, SGD (see Appendix C).

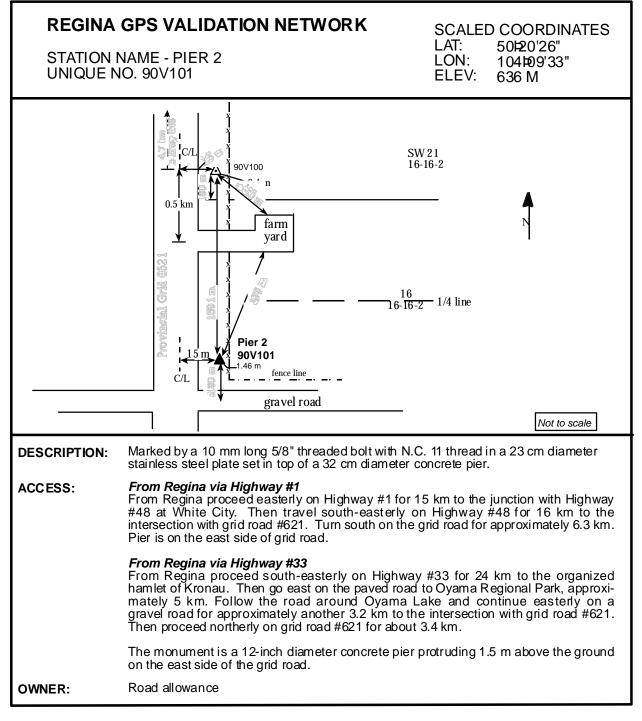
The descriptions, sketches and coordinate values provided in this booklet are intended to provide all the basic information needed to use the Regina GPS validation network as a physical standard for testing and validating GPS positioning systems to suit specific applications. Details on obtaining further information, data or documents are given in Appendix C.

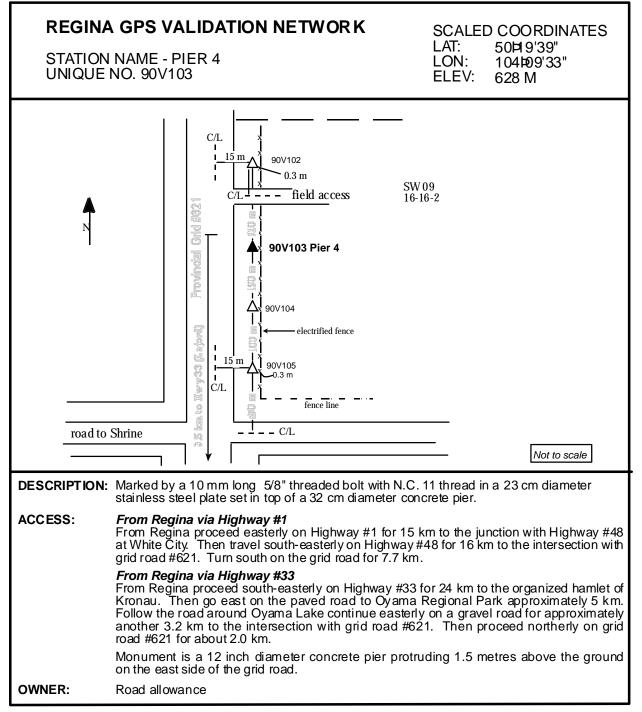
Appendix A

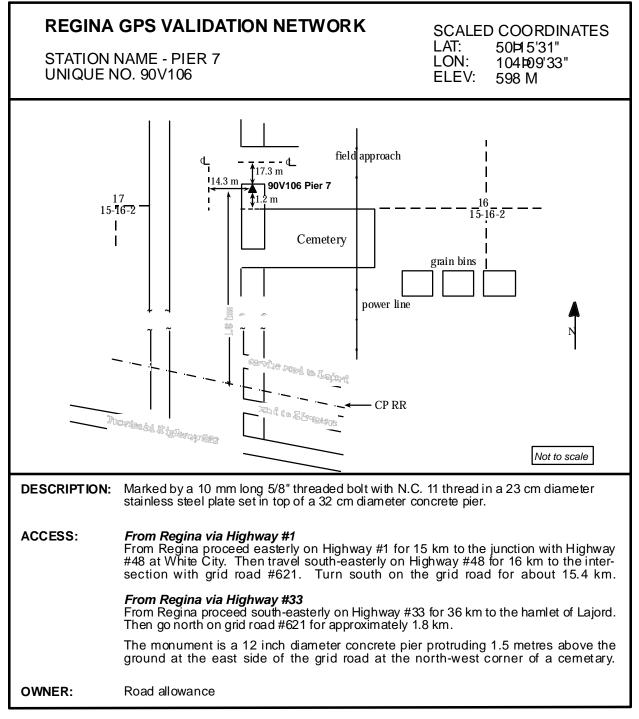
Station Descriptions and Site Sketches

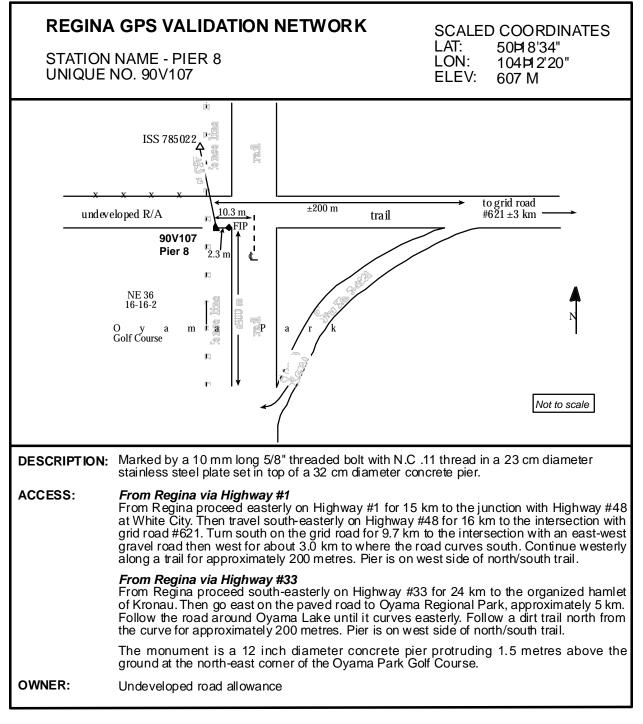
NGDB [*] Number	Station Name
90V100	Pier 1
90V101	Pier 2
90V103	Pier 4
90V106	Pier 7
90V107	Pier 8
90V108	Pier 9
90V109	Pier 10
90V110	Pier 11
90V111	Pier 12
90V112	Pier 13
90V113	Pier 14

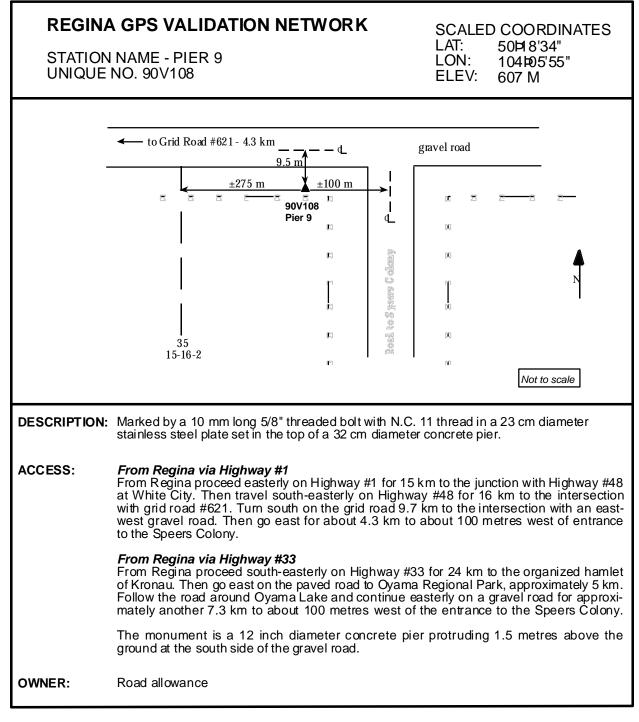

* NGDB: National Geodetic Data Base

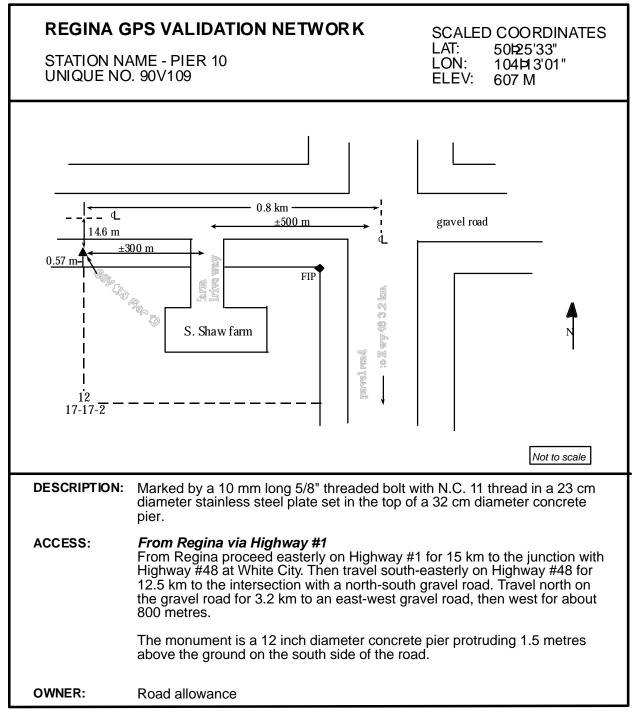

Notice to Users

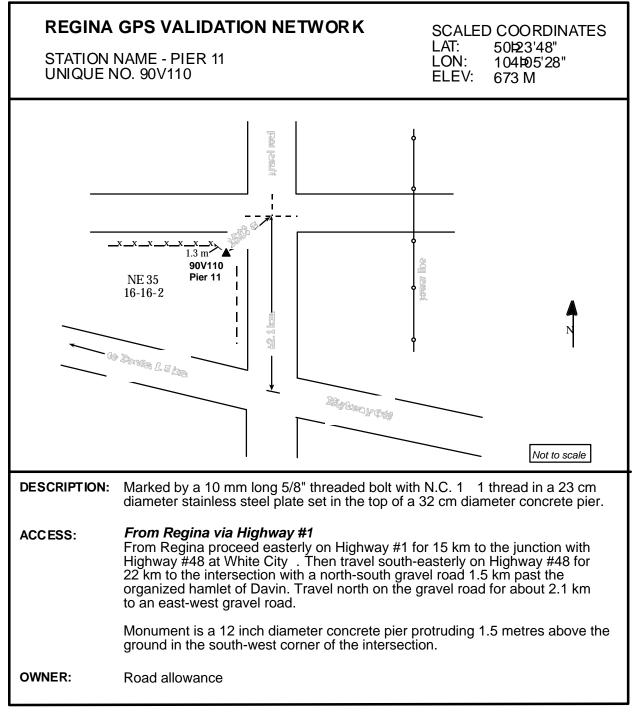

- The Regina GPS validation network is located on public property. Any damage to private or public property which may occur during the use of the network is the responsibility of the user.
- Users must obey normal traffic safety laws.
- The network was installed with the cooperation of local residents and common courtesy should be observed during occupations.
- The adjacent roads are not paved; please try to keep dust levels at a minimum by driving at a moderate rate of speed.
- Users are also asked to assist in the preservation of the network pillars. Please report any damage or potential dangers to:

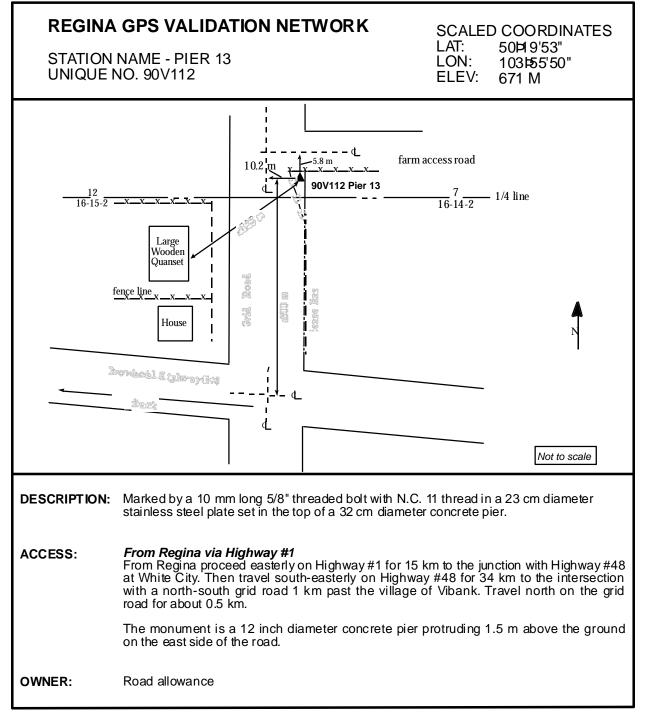

SaskGeomatics Division Geodetic Surveys Branch 3rd Floor 2151 Scarth Street Regina, Saskatchewan S4P 3V7

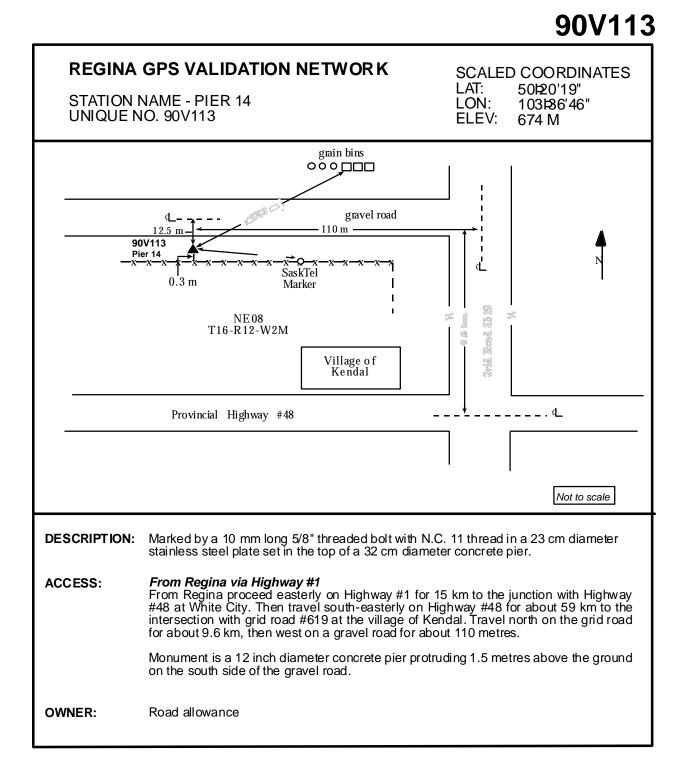

Tel: (306) 787-2836 *Fax:* (306) 787-4617










13

Appendix B

Tables of Values

(Regina GPS Validation Network - 1991 & 1992 epochs combined)

Warning to Users: These coordinates are to be used for validation <u>only</u>, and are not to be considered survey control values. Control coordinates may be obtained from SGD as described in Appendix C. Note that station 90V107 was constrained to its NAD83(CSRS) value in the adjustment that produced these coordinates.

Station #	Latitude North (d m s)			ongit Wes (d m	st	Ellipsoidal Height (m)	
90V107	50	18	33.92406	104	12	20.30107	587.396
90V100	50	21	17.71414	104	09	33.70596	639.535
90V101	50	20	26.21009	104	09	33.43150	616.725
90V103	50	19	39.45709	104	09	33.19143	608.307
90V106	50	15	31.04041	104	09	32.59067	578.869
90V108	50	18	33.95072	104	05	54.61278	618.177
90V109	50	25	33.06947	104	13	01.02503	639.270
90V110	50	23	48.46053	104	05	28.04085	653.943
90V111	49	47	57.76611	104	15	52.97302	561.985
90V112	50	19	52.79055	103	55	49.88938	651.660
90V113	50	20	18.71413	103	36	45.88224	654.038

Table 1: Ellipsoidal Coordinates

Station #	X (m)	Y (m)	Z (m)
90V107	-1001688.598	-3956997.088	4885293.071
90V100	-997547.392	-3954059.425	4888564.073
90V101	-997838.325	-3955234.812	4887530.888
90V103	-998104.456	-3956309.114	4886602.211
90V106	-999532.940	-3962020.024	4881675.403
90V108	-994292.417	-3958881.648	4885317.283
90V109	-1000028.075	-3947161.513	4893594.820
90V110	-991965.992	-3951773.503	4891546.047
90V111	-1016481.911	-3998103.031	4848844.929
90V112	-982235.325	-3959980.543	4886898.608
90V113	-960112.297	-3964769.512	4887411.772

Table 2: Geocentric Cartesian Coordinates

Table 3: UTM Mapping Plane Coordinates

Station #	Northing (m)	Easting (m)	Zone
90V107	5573336.459	556562.967	13
90V100	5578431.422	559800.930	13
90V101	5576840.737	559824.325	13
90V103	5575396.788	559845.383	13
90V106	5567724.433	559943.902	13
90V108	5573424.163	564191.509	13
90V109	5586273.666	555621.214	13
90V110	5583144.432	564598.417	13
90V111	5516584.519	552914.462	13
90V112	5576017.479	576117.300	13
90V113	5577191.412	598718.857	13

Warning to Users: Distances derived from UTM coordinates are distorted. They cannot be compared to spatial distances derived from Cartesian or ellipsoidal coordinates without applying the proper scale factors. UTM coordinates and distances should only be compared to other UTM coordinates and distances. For more information, please contact Geodetic Survey as described in Appendix C.

From Station	To Station	ΔX (m)	Δ Y (m)	$\Delta \mathbf{Z} (\mathbf{m})$	Spatial Distance (m)
90V107	90V100	4141.206	2937.663	3271.003	6039.778
90V107	90V101	3850.273	1762.276	2237.817	4789.368
90V107	90V103	3584.142	687.974	1309.141	3877.272
90V107	90V106	2155.658	-5022.936	-3617.668	6554.713
90V107	90V108	7396.181	-1884.560	24.212	7632.539
90V107	90V109	1660.523	9835.576	8301.750	12977.478
90V107	90V110	9722.606	5223.585	6252.977	12685.213
90V107	90V111	-14793.313	-41105.943	-36448.141	56894.706
90V107	90V112	19453.273	-2983.454	1605.538	19746.103
90V107	90V113	41576.301	-7772.423	2118.702	42349.596
90V100	90V101	-290.934	-1175.387	-1033.186	1591.744
90V100	90V103	-557.064	-2249.689	-1961.862	3036.498
90V100	90V106	-1985.548	-7960.599	-6888.671	10712.951
90V100	90V108	3254.975	-4822.223	-3246.791	6662.608
90V100	90V109	-2480.683	6897.913	5030.747	8890.636
90V100	90V110	5581.400	2285.922	2981.974	6728.271
90V100	90V111	-18934.519	-44043.606	-39719.144	62257.254
90V100	90V112	15312.067	-5921.117	-1665.465	16501.297
90V100	90V113	37435.095	-10710.086	-1152.301	38954.077
90V101	90V103	-266.130	-1074.302	-928.676	1444.780
90V101	90V106	-1694.614	-6785.212	-5855.485	9121.268
90V101	90V108	3545.909	-3646.836	-2213.605	5547.335
90V101	90V109	-2189.750	8073.299	6063.932	10331.720
90V101	90V110	5872.333	3461.309	4015.159	7911.161
90V101	90V111	-18643.585	-42868.219	-38685.959	60678.422
90V101	90V112	15603.001	-4745.731	-632.279	16321.010
90V101	90V113	37726.029	-9534.700	-119.116	38912.439
90V103	90V106	-1428.484	-5710.910	-4926.809	7676.490
90V103	90V108	3812.039	-2572.534	-1284.929	4774.999
90V103	90V109	-1923.619	9147.601	6992.609	11673.710
90V103	90V110	6138.464	4535.611	4943.836	9093.625
90V103	90V111	-18377.455	-41793.917	-37757.282	59245.883
90V103	90V112	15869.131	-3671.429	296.397	16290.996
90V103	90V112	37992.159	-8460.398	809.561	38931.194

 Table 4: Interstation Cartesian Coordinate Differences

continued on next page...

 Table 4 (continued)

From Station	To Station	ΔX (m)	ΔY(m)	Δ Z (m)	Spatial Distance (m)
90V106	90V108	5240.523	3138.376	3641.880	7111.665
90V106	90V109	-495.135	14858.511	11919.418	19055.000
90V106	90V110	7566.948	10246.521	9870.645	16114.574
90V106	90V111	-16948.971	-36083.007	-32830.473	51643.886
90V106	90V112	17297.615	2039.481	5223.206	18183.752
90V106	90V113	39420.643	-2749.488	5736.370	39930.599
90V108	90V109	-5735.658	11720.135	8277.538	15452.410
90V108	90V110	2326.425	7108.145	6228.765	9733.215
90V108	90V111	-22189.494	-39221.383	-36472.353	57973.469
90V108	90V112	12057.092	-1098.895	1581.326	12209.899
90V108	90V113	34180.120	-5887.864	2094.490	34746.718
90V109	90V110	8062.083	-4611.991	-2048.773	9511.315
90V109	90V111	-16453.836	-50941.518	-44749.891	69773.345
90V109	90V112	17792.750	-12819.030	-6696.212	22929.211
90V109	90V113	39915.778	-17607.999	-6183.048	44062.922
90V110	90V111	-24515.919	-46329.528	-42701.118	67607.994
90V110	90V112	9730.667	-8207.039	-4647.439	13551.386
90V110	90V112	31853.695	-12996.008	-4134.275	34650.344
90V111	90V112	34246.586	38122.488	38053.679	63829.737
90V111 90V111	90V112 90V113	56369.614	33333.519	38566.843	76000.384
90V112	90V113	22123.028	-4788.969	513.164	22641.244

Station #	Major				Medium			Minor		
	S	emi-axi	S	Se	mi-axis		Se	emi-axis		
	length		inc.	length	az.	inc.	length	az.	inc.	
	(m)	(deg)	(deg)	(m)	(deg)	(deg)	(m)	(deg)	(deg)	
90V107	0.02	331	86	0.02	345	-3	0.02	75	1	
90V100	0.03	14	89	0.02	5	-1	0.02	95	0	
90V101	0.03	10	89	0.02	6	-1	0.02	96	0	
90V103	0.03	15	89	0.02	5	-1	0.02	95	0	
90V106	0.03	10	88	0.02	8	-2	0.02	98	0	
90V108	0.03	71	88	0.02	2	-1	0.02	92	-2	
90V109	0.03	24	89	0.02	6	-1	0.02	96	0	
90V110	0.03	59	88	0.02	3	-1	0.02	93	-2	
90V111	0.03	22	88	0.02	9	-2	0.02	99	0	
90V112	0.03	24	89	0.02	9	-1	0.02	99	0	
90V113	0.03	20	89	0.02	8	-1	0.02	98	0	

Table 5: Absolute 95% 3-D Confidence Ellipsoids

Table 6: Absolute 95%Horizontal Confidence Ellipses

Table 7: Absolute 95% VerticalConfidence Intervals

		omnuene	Connuch			
Station #	Major Semi-axis		Minor Semi-axis		Station #	+/-
	length (m)	az. (deg)	length (m)	az. (deg)		length (m)
90V107	0.02	341	0.02	71	90V107	0.02
90V100	0.02	5	0.02	95	90V100	0.02
90V101	0.02	6	0.02	96	90V101	0.02
90V103	0.02	5	0.02	95	90V103	0.02
90V106	0.02	8	0.02	98	90V106	0.02
90V108	0.02	3	0.02	93	90V108	0.02
90V109	0.02	6	0.02	96	90V109	0.02
90V110	0.02	3	0.02	93	90V110	0.02
90V111	0.02	9	0.02	99	90V111	0.02
90V112	0.02	10	0.02	100	90V112	0.02
90V113	0.02	8	0.02	98	90V113	0.02

Note: the semi-axes of the absolute confidence regions are shown to the nearest centimetre (rather than millimetre), because absolute accuracy with respect to the reference system NAD83 (CSRS) is known only at the centimetre level.

From	То	Major				Iedium		Minor		
Station	Station	Semi-axis		Semi-axis				Semi-axis		
		length	az.	inc.	length	az.	inc.	length	az.	inc.
		(m)	(deg)	(deg)	(m)	(deg)	(deg)	(m)	(deg)	(deg)
90V107	90V100	0.015	111	88	0.007	8	1	0.005	98	-2
90V107	90V101	0.015	103	88	0.007	9	0	0.005	99	-2
90V107	90V103	0.015	103	88	0.007	8	0	0.005	98	-2
90V107	90V106	0.016	90	88	0.007	10	0	0.005	100	-2
90V107	90V108	0.019	102	86	0.009	5	1	0.007	95	-4
90V107	90V109	0.016	98	87	0.007	9	0	0.005	99	-3
90V107	90V110	0.018	99	86	0.008	6	0	0.006	96	-4
90V107	90V111	0.019	67	88	0.009	11	-1	0.006	101	-2
90V107	90V112	0.019	93	88	0.009	11	0	0.006	101	-2
90V107	90V113	0.019	103	88	0.008	10	0	0.006	100	-2
90V100	90V101	0.015	125	87	0.007	8	1	0.005	98	-3
90V100	90V103	0.014	131	88	0.007	10	1	0.005	99	-2
90V100	90V106	0.016	117	88	0.007	12	0	0.005	102	-2
90V100	90V108	0.019	107	86	0.009	5	1	0.007	95	-4
90V100	90V109	0.015	120	88	0.007	11	1	0.005	101	-2
90V100	90V110	0.017	108	86	0.008	7	1	0.006	97	-4
90V100	90V111	0.020	87	88	0.009	11	-1	0.007	101	-2
90V100	90V112	0.019	107	88	0.009	11	0	0.007	101	-2
90V100	90V113	0.019	127	88	0.009	11	1	0.006	101	-2
90V101	90V103	0.015	124	87	0.007	8	1	0.005	98	-3
90V101	90V106	0.016	107	88	0.008	11	0	0.006	101	-2
90V101	90V108	0.019	106	86	0.009	5	1	0.007	95	-4
90V101	90V109	0.016	111	87	0.007	10	0	0.006	100	-3
90V101	90V110	0.017	106	86	0.008	6	1	0.006	96	-4
90V101	90V111	0.020	84	88	0.009	11	-1	0.007	101	-2
90V101	90V112	0.019	105	88	0.009	11	0	0.007	101	-2
90V101	90V113	0.019	118	88	0.009	11	1	0.006	101	-2
90V103	90V106	0.016	112	88	0.007	12	0	0.005	102	-2
90V103	90V108	0.019	105	86	0.009	6	1	0.007	95	-4
90V103	90V109	0.016	115	88	0.007	11	1	0.005	101	-2
90V103	90V110	0.017	106	86	0.008	7	1	0.006	97	-4
90V103	90V111	0.020	84	88	0.009	11	-1	0.007	101	-2
90V103	90V112	0.019	104	88	0.009	11	0	0.007	101	-2
90V103	90V113	0.019	124	88	0.009	11	1	0.006	101	-2

 Table 8: Relative 95% 3-D Confidence Ellipsoids

continued on next page...

Table 8	(continued)
---------	-------------

From	То	Major				edium		Minor				
Station	Station	Se	mi-axis	;	Semi-axis				Semi-axis			
		length	az.	inc.	length	az.	inc.	length (m)	az.	inc.		
		(m)	(deg)	(deg)	(m)	(deg)	(deg)		(deg)	(deg)		
90V106	90V108	0.020	95	86	0.009	12	0	0.007	102	-4		
90V106	90V109	0.016	111	88	0.007	12	0	0.005	102	-2		
90V106	90V110	0.018	102	86	0.008	9	0	0.006	99	-4		
90V106	90V111	0.019	81	87	0.009	11	-1	0.006	101	-3		
90V106	90V112	0.019	101	87	0.009	12	0	0.007	102	-3		
90V106	90V113	0.018	114	88	0.008	12	0	0.006	102	-2		
90V108	90V109	0.021	103	86	0.009	8	0	0.007	98	-4		
90V108	90V110	0.021	103	85	0.009	5	1	0.007	94	-5		
90V108	90V110	0.022	89	86	0.010	9	-1	0.008	99	-4		
90V108	90V112	0.023	100	86	0.010	9	0	0.008	99	-4		
90V108	90V112	0.022	103	86	0.010	9	0	0.008	99	-4		
90V109	90V110	0.017	104	86	0.008	8	0	0.006	98	-4		
90V109	90V111	0.019	82	87	0.009	11	-1	0.007	101	-3		
90V109	90V112	0.020	102	87	0.009	12	0	0.007	102	-3		
90V109	90V113	0.018	118	88	0.008	12	1	0.006	102	-2		
90V110	90V111	0.021	89	86	0.010	9	-1	0.007	99	-4		
90V110	90V112	0.021	98	86	0.010	9	0	0.007	99	-4		
90V110	90V113	0.020	108	87	0.009	9	1	0.007	99	-3		
										-		
90V111	90V112	0.021	83	87	0.010	13	-1	0.007	103	-2		
90V111	90V113	0.020	89	87	0.009	12	-1	0.007	102	-3		
90V112	90V113	0.020	105	87	0.010	12	0	0.007	102	-3		

Table 9: Relative 95%Horizontal Confidence Ellipses

Table 10: Relative 95% VerticalConfidence Intervals

From Station	To Station	Semi-axis length az		Minor Semi-axis length az		From Station	To Station	+/- length
		(m)	(deg)	(m)	(deg)			(m)
90V107	90V100	0.006	8	0.005	98	90V107	90V100	0.010
90V107	90V101	0.006	9	0.005	99	90V107	90V101	0.010
90V107	90V103	0.006	8	0.005	98	90V107	90V103	0.011
90V107	90V106	0.006	10	0.005	100	90V107	90V106	0.011
90V107	90V108	0.008	5	0.006	95	90V107	90V108	0.013
90V107	90V109	0.006	9	0.005	99	90V107	90V109	0.011
90V107	90V110	0.007	5	0.005	95	90V107	90V110	0.012
90V107	90V111	0.007	11	0.006	101	90V107	90V111	0.013
90V107	90V112	0.008	11	0.006	101	90V107	90V112	0.013
90V107	90V113	0.007	10	0.005	100	90V107	90V113	0.013
001/100	001/101	0.007	0	0.004	00	001/100	001/101	0.010
90V100	90V101	0.006	8	0.004	98	90V100	90V101	0.010
90V100	90V103	0.006	9	0.004	99	90V100	90V103	0.010
90V100	90V106	0.006	11	0.005	101	90V100	90V106	0.011
90V100	90V108	0.008	5	0.006	95	90V100	90V108	0.013
90V100	90V109	0.006	11	0.005	101	90V100	90V109	0.011
90V100	90V110	0.007	6	0.005	96	90V100	90V110	0.012
90V100	90V111	0.008	11	0.006	101	90V100	90V111	0.014
90V100	90V112	0.008	10	0.006	100	90V100	90V112	0.014
90V100	90V113	0.008	11	0.006	101	90V100	90V113	0.013
90V101	90V103	0.006	8	0.004	98	90V101	90V103	0.010
90V101	90V106	0.007	11	0.005	101	90V101	90V106	0.011
90V101	90V108	0.007	5	0.005	95	90V101	90V108	0.011
90V101	90V100	0.000	10	0.000	100	90V101	90V100	0.014
90V101	90V109	0.007	6	0.005	96	90V101	90V109	0.011
90V101	90V110	0.007	12	0.005	102	90V101	90V110	0.012
90V101 90V101	90V111 90V112	0.008	12	0.000	102	90V101 90V101	90V111 90V112	0.014
90V101 90V101	90V112 90V113	0.008	11	0.000	101	90V101 90V101	90V112 90V113	0.013
201101	90 113	0.008	11	0.000	101	901101	901113	0.015

continued on next page...

Table 10 (continued)

Table 9 (continued)									
G4 4•	N7 ·								

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			ie 9 (contin		Table 10 (continued)						
(m)(deg)(m)(deg)(m) $90V103$ $90V106$ 0.006 12 0.005 102 $90V103$ $90V108$ 0.011 $90V103$ $90V108$ 0.008 5 0.006 95 $90V103$ $90V108$ 0.014 $90V103$ $90V109$ 0.006 11 0.005 101 $90V103$ $90V109$ 0.014 $90V103$ $90V110$ 0.007 6 0.005 96 $90V103$ $90V110$ 0.012 $90V103$ $90V111$ 0.008 11 0.006 101 $90V103$ $90V112$ 0.014 $90V103$ $90V112$ 0.008 11 0.006 101 $90V103$ $90V112$ 0.014 $90V106$ $90V108$ 0.008 12 0.006 102 $90V106$ $90V108$ 0.014 $90V106$ $90V110$ 0.007 9 0.006 99 $90V106$ $90V110$ 0.013 $90V106$ $90V110$ 0.007 9 0.006 99 $90V106$ $90V110$ 0.013 $90V106$ $90V111$ 0.008 11 0.006 101 $90V106$ $90V110$ 0.013 $90V106$ $90V111$ 0.008 12 0.006 102 $90V106$ $90V110$ 0.013 $90V106$ $90V111$ 0.008 7 0.006 97 $90V106$ $90V110$ 0.013 $90V108$ $90V110$ 0.007 8 0.007 99 $90V108$ $90V110$ 0.015		To Station	Semi-axis		Semi-axis						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			U		-					length	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			(m)	(deg)	(m)	(deg)				(m)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	90V103	90V106	0.006	12	0.005	102		90V103	90V106	0.011	
90V103 90V103 90V103 90V103 90V103 90V101 0.012 90V103 90V111 0.008 11 0.006 101 90V103 90V111 0.014 90V103 90V112 0.008 11 0.006 101 90V103 90V112 0.014 90V106 90V108 0.008 12 0.006 101 90V106 90V108 0.013 90V106 90V106 90V106 90V106 90V106 90V109 0.011 90V106 90V110 0.007 9 0.006 99 90V106 90V109 0.011 90V106 90V111 0.008 11 0.006 101 90V106 90V111 0.013 90V106 90V112 0.008 12 0.006 102 90V106 90V112 0.013 90V108 90V109 0.007 12 0.005 102 90V108 90V113 0.015 90V108 90V111 0.009 10	90V103	90V108	0.008	5	0.006	95		90V103	90V108	0.014	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	90V103	90V109	0.006	11	0.005	101		90V103	90V109	0.011	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	90V103	90V110	0.007	6	0.005	96		90V103	90V110	0.012	
90V103 90V113 0.008 11 0.006 101 90V103 90V113 0.013 90V106 90V108 0.008 12 0.006 102 90V106 90V108 0.014 90V106 90V106 90V109 0.006 12 0.005 102 90V106 90V106 90V10 0.013 90V106 90V111 0.008 11 0.006 101 90V106 90V110 0.013 90V106 90V112 0.008 12 0.006 102 90V106 90V111 0.013 90V106 90V113 0.007 12 0.005 102 90V106 90V112 0.013 90V108 90V109 0.007 12 0.005 102 90V106 90V113 0.014 90V108 90V111 0.009 4 0.007 94 90V108 90V110 0.015 90V108 90V113 0.009 9 0.007 99 90V108 90V111 <	90V103	90V111	0.008	11	0.006	101		90V103	90V111	0.014	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90V103	90V112	0.008	11	0.006	101		90V103	90V112	0.014	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	90V103	90V113	0.008	11	0.006	101		90V103	90V113	0.013	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90V106	90V108	0.008	12	0.006	102		90V106	90V108	0.014	
90V106 90V111 0.008 11 0.006 101 90V106 90V111 0.013 90V106 90V112 0.008 12 0.005 102 90V106 90V112 0.013 90V106 90V107 12 0.005 102 90V106 90V112 0.013 90V108 90V109 0.007 12 0.005 102 90V106 90V113 0.013 90V108 90V109 0.008 7 0.006 97 90V108 90V109 0.014 90V108 90V111 0.009 4 0.007 94 90V108 90V110 0.015 90V108 90V112 0.009 9 0.007 99 90V108 90V112 0.015 90V108 90V113 0.007 8 0.005 98 90V108 90V113 0.012 90V109 90V111 0.008 12 0.006 102 90V109 90V110 0.012 90V109 90V11	90V106	90V109	0.006	12	0.005	102		90V106	90V109	0.011	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90V106	90V110	0.007	9	0.006	99		90V106	90V110	0.013	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	90V106	90V111	0.008	11	0.006	101		90V106	90V111	0.013	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	90V106	90V112	0.008	12	0.006	102		90V106	90V112	0.013	
90V10890V1100.00940.0079490V10890V1100.01590V10890V1110.009100.00710090V10890V1110.01690V10890V1120.00990.0079990V10890V1120.01590V10890V1130.00990.0079990V10890V1120.01590V10990V1100.00780.0059890V10990V10890V1130.01290V10990V1110.008120.00610290V10990V1100.01290V10990V1120.008120.00610290V10990V1120.01490V10990V1130.007110.00510190V10990V1120.01590V10990V1110.009100.00710090V10990V1120.01490V10990V1120.008130.00610390V11090V1120.01490V11190V1120.008130.00610290V11190V1120.01490V11190V1130.008120.00610290V11190V1120.01490V11190V1130.008120.00610290V11190V1120.01490V11190V1130.008120.00610290V11190V1130.014	90V106	90V113	0.007	12	0.005	102		90V106	90V113	0.013	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90V108	90V109	0.008	7	0.006	97		90V108	90V109	0.014	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	90V108	90V110	0.009	4	0.007	94		90V108	90V110	0.015	
90V10890V1130.00990.0079990V10890V1130.01590V10990V1100.00780.0059890V10990V1100.01290V10990V1110.008120.00610290V10990V1110.01490V10990V1120.008120.00610290V10990V1120.01490V10990V1130.007110.00510190V10990V1130.01390V11090V1110.009100.00710090V11090V1110.01590V11090V1120.00990.0079990V11090V1120.01590V11090V1130.00890.0069990V11090V1130.01490V11190V1120.008130.00610390V11190V1120.01490V11190V1130.008120.00610290V11190V1130.014	90V108	90V111	0.009	10	0.007	100		90V108	90V111	0.016	
90V109 90V110 0.007 8 0.005 98 90V109 90V110 0.012 90V109 90V111 0.008 12 0.006 102 90V109 90V111 0.014 90V109 90V112 0.008 12 0.006 102 90V109 90V112 0.014 90V109 90V113 0.007 11 0.005 101 90V109 90V112 0.014 90V109 90V113 0.007 11 0.005 101 90V109 90V113 0.013 90V110 90V111 0.009 10 0.007 100 90V110 90V111 0.015 90V110 90V112 0.009 9 0.007 99 90V110 90V112 0.015 90V110 90V113 0.008 9 0.006 99 90V110 90V112 0.014 90V111 90V112 0.008 13 0.006 103 90V111 90V113 0.014 90V1	90V108	90V112	0.009	9	0.007	99		90V108	90V112	0.015	
90V109 90V111 0.008 12 0.006 102 90V109 90V111 0.014 90V109 90V112 0.008 12 0.006 102 90V109 90V111 0.014 90V109 90V113 0.007 11 0.005 101 90V109 90V112 0.014 90V109 90V113 0.007 11 0.005 101 90V109 90V113 0.013 90V110 90V111 0.009 10 0.007 100 90V110 90V111 0.015 90V110 90V112 0.009 9 0.007 99 90V110 90V112 0.015 90V110 90V113 0.008 9 0.006 99 90V110 90V113 0.014 90V111 90V112 0.008 13 0.006 103 90V111 90V112 0.014 90V111 90V113 0.008 12 0.006 102 90V111 90V113 0.014	90V108	90V113	0.009	9	0.007	99		90V108	90V113	0.015	
90V109 90V112 0.008 12 0.006 102 90V109 90V112 0.014 90V109 90V113 0.007 11 0.005 101 90V109 90V112 0.014 90V109 90V111 0.007 11 0.005 101 90V109 90V112 0.013 90V110 90V111 0.009 10 0.007 100 90V110 90V111 0.015 90V110 90V112 0.009 9 0.007 99 90V110 90V112 0.015 90V110 90V113 0.008 9 0.006 99 90V110 90V112 0.014 90V111 90V112 0.008 13 0.006 99 90V110 90V113 0.014 90V111 90V113 0.008 13 0.006 103 90V111 90V113 0.014 90V111 90V113 0.008 12 0.006 102 90V111 90V113 0.014	90V109	90V110	0.007	8	0.005	98		90V109	90V110	0.012	
90V109 90V113 0.007 11 0.005 101 90V109 90V113 0.013 90V110 90V111 0.009 10 0.007 100 90V110 90V111 0.015 90V110 90V112 0.009 9 0.007 99 90V110 90V112 0.015 90V110 90V113 0.008 9 0.006 99 90V110 90V112 0.015 90V111 90V113 0.008 13 0.006 99 90V110 90V112 0.014 90V111 90V113 0.008 12 0.006 102 90V111 90V112 0.014	90V109	90V111	0.008	12	0.006	102		90V109	90V111	0.014	
90V110 90V111 0.009 10 0.007 100 90V110 90V111 0.015 90V110 90V112 0.009 9 0.007 99 90V110 90V111 0.015 90V110 90V113 0.008 9 0.006 99 90V110 90V112 0.015 90V111 90V113 0.008 13 0.006 103 90V111 90V112 0.014 90V111 90V113 0.008 12 0.006 102 90V111 90V112 0.014	90V109	90V112	0.008	12	0.006	102		90V109	90V112	0.014	
90V110 90V112 0.009 9 0.007 99 90V110 90V112 0.015 90V110 90V113 0.008 9 0.006 99 90V110 90V112 0.015 90V111 90V112 0.008 13 0.006 103 90V111 90V112 0.014 90V111 90V113 0.008 12 0.006 102 90V111 90V113 0.014	90V109	90V113	0.007	11	0.005	101		90V109	90V113	0.013	
90V110 90V112 0.009 9 0.007 99 90V110 90V112 0.015 90V110 90V113 0.008 9 0.006 99 90V110 90V112 0.015 90V111 90V112 0.008 13 0.006 103 90V111 90V112 0.014 90V111 90V113 0.008 12 0.006 102 90V111 90V113 0.014	90V110	90V111	0.009	10	0.007	100		90V110	90V111	0.015	
90V110 90V113 0.008 9 0.006 99 90V110 90V113 0.014 90V111 90V112 0.008 13 0.006 103 90V111 90V112 0.014 90V111 90V113 0.008 12 0.006 103 90V111 90V112 0.014 90V111 90V113 0.008 12 0.006 102 90V111 90V113 0.014										0.015	
90V111 90V113 0.008 12 0.006 102 90V111 90V113 0.014										0.014	
90V111 90V113 0.008 12 0.006 102 90V111 90V113 0.014	90V111	90V112	0.008	13	0.006	103		90V111	90V112	0.014	
										0.014	
$\begin{bmatrix} 907112 & 907113 \\ 0.000 & 12 \\ 0.000 & 102 \\ 0.0112 & 907112 \\ 907112 & 907112 \\ 0.014 \\ 0.004 \\ 0.014 \\ 0.004 \\ 0.014 \\ 0.004 \\ 0.014 \\ 0.004 \\ 0.014 \\ 0.004 \\ 0$	90V112	90V113	0.008	12	0.006	102				0.014	

Appendix C

Contacts for Additional Information

The following information is available in various formats and on different media, including computer diskette, from the Map and Air Photo Distribution Centre (see below):

- Adopted NAD83 survey control values for network piers
- Official validation coordinates (in ellipsoidal, mapping plane or Cartesian format) as they appear in this document
- Coordinates and associated covariance matrix for network piers

SaskGeomatics Division Map and Air Photo Distribution Centre Ist Floor 2151 Scarth Street Regina, Saskatchewan S4P 3V7

Tel: (306) 787-2799 *Fax:* (306) 787-3335

Email: ingeodetic@sgd.sask.net

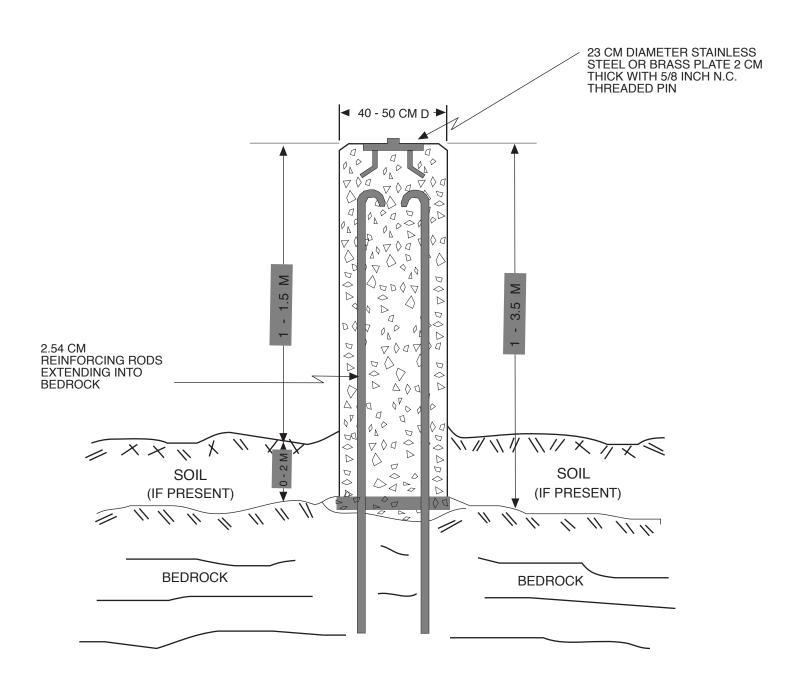
For more information on the Davin/Regina EDM calibration baseline, please request a copy of the SGD publication "Saskatchewan Precise Calibration Baselines" available at the above address.

For more information on the Regina GPS validation network analysis, and determination of coordinate values contained in this guide, contact:

Client Services Section Geodetic Survey Division Natural Resources Canada 615 Booth Street Ottawa, Ontario K1A 0E9

Tel. (613) 995-4410 or 992-2061 Fax. (613) 995-3215 Email: information@geod.nrcan.gc.ca

Appendix D

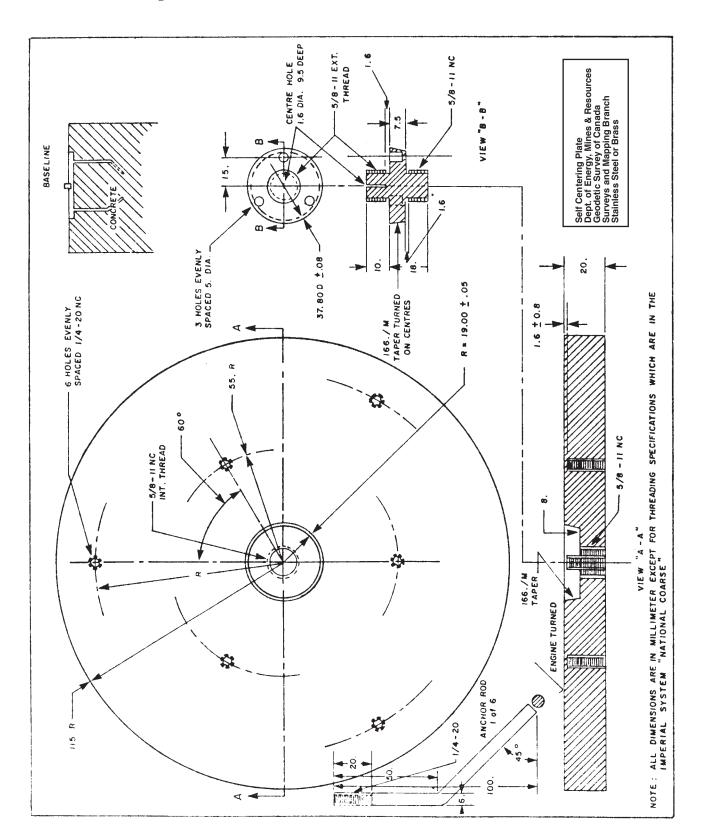

Saskatchewan Property Management Corporation

SaskGeomatics Division

<u>Pier Design</u>

Forced Centering Pillars

D.1 Cross Section



D.2 Pier Construction

The piers are 12 inches in diameter by about 5.5 meters in length, set a minimum of 4 meters below grade. They are constructed of type 5 concrete and are reinforced with four "size 10" rebars placed vertically in each pier from bottom to about 3 inches below the top of each pier. Rebars are cross-tied by 3 circular "size 10" rebars set near the top, middle and bottom of the vertical rebar.

Each pier protrudes about 1.5 meters above the ground and is capped with a custom manufactured stainless steel plate to allow forced centering of a Wild tribrach. The stainless steel plate is 22.86 cm (9 inches) in diameter and has a 10 mm long, 1.59 cm (5/8 inch) diameter threaded bolt with N.C. 11 thread.

Reconnaissance for the network was done by Tim Flaman of Eagle Surveys Ltd. and SGD staff members.

